The Final Report does a very good job of documenting the discussions. My only comment is that the question of nutrient loading in the river could be highlighted a bit more to reflect Regional Board concerns:

I would add on Page 11, 12, under Option 2

Additional more detailed data gaps and constraints included:

- How do we analyze and quantify the risks to the public water supply from some level of natural transport of fine sediments (and nutrient-laden sediments)?
- What are the impacts on well water quality as well as management of Lake Casitas?
- What is the background nutrient level in Lake Casitas? What is the expected nutrient loading to Lake Casistas and to the Ventura River, recognizing that the Ventura River is presently impaired by high nutrient levels and algae?
- Need to redefine the “without-project alternative:” to account for continued accumulation of sediment in Matilija Reservoir

Page 13 under Option 3

Additional data gaps or constraints that were raised by the Group in the course of their discussion included:

- Feasibility, construction complexity of ‘downstream option’
- What is an optimal/practicable diversion (in cfs) of water to Casitas and other diverters?
- Duration and timing of diversions
- Are costs of “downstream option” significantly less than slurrying/4b?
- Effects of downstream transport of sediment/nutrients on groundwater wells
 Effects of downstream transport of nutrients on the Ventura
River
- Would it be feasible to divert water to North Fork Matilija?
- Impacts on water rights
- Could the downstream option be permitted/approved by regulatory agencies?

Page 14 under Regulatory constraints

In response to questions regarding the regulatory thresholds for instream sediment loads, staff of the Los Angeles Regional Water Quality Control Board indicated that the Board’s main concerns would focus on the duration and timing of sediment pulses, as well as the nutrient levels in the sediments themselves. If sediment levels mimicked natural events, those levels would be less important than ones that introduce a chronic sediment problem to the system. And so it is critically important to define what would be considered a “chronic” sediment issue, as well as to understand how sediment thresholds in the Basin Plan should be applied and how a ‘beneficial use’ should be specified for anadromous fish. The potential for additional nutrient loading is also a concern. The Ventura River is already impaired by high nutrient levels so permitting additional loading is difficult.

I also note that Matt Stoeker made the following recommendation in his comments:

- If still needed, following the above investigations, define the design of the downstream Baldwin Road slurry disposal sites (as well as the slurry pipeline system) that would then be required to accommodate the balance of fine materials that could not be effectively managed through an upstream restoration effort or natural transport. Among the objectives of that effort would be to minimize the cost, complexity and adverse impacts of the BRDA component. That analysis should also include the feasibility of incorporating components of the Double Barrel
By-Pass proposal that could ensure high water quality objectives for downstream water users and wildlife during the project duration, while allowing controlled natural sediment transport and even limited slurry disposal options.

but I find it implies that "Double Barrel" would actually ensure "high water quality" If you incorporate his change, will you also include something to the effect that The effect of the Double Barrel By-Pass on water quality, sediment and nutrient loading, in Lake Casitas and in the Ventura River, itself, would need to be established.

LB Nye, PhD
Senior Environmental Scientist
California Regional Water Quality Control Board, Los Angeles Region
(213) 576-6785
lnye@waterboards.ca.gov

-Selkirk, Mary L <mselkirk@ccp.csus.edu>
7/14/2011 10:03 AM